CASE REPORT

α-Penicillamine induced elastosis perforans serpiginosa with involvement of glans penis

Yao-Nien Chuang¹, Chun-An Yao¹, Tsu-Man Chiu¹, Kuo-Chia Yang¹, Yueh-Min Lin², Hsiu-Cheng Hsu¹*,†

¹Department of Dermatology, Changua Christian Hospital, Changua, Taiwan
²Department of Pathology, Changua Christian Hospital, Changua, Taiwan

ABSTRACT

Elastosis perforans serpiginosa (EPS) is an unusual perforating disorder characterized by extrusion of altered elastic fibers through the epidermis. Clinically, it presents as keratotic papules with a tendency for serpiginous or annular distribution that most commonly involves the sides of the neck and the back. However, involvement of the penis has rarely been reported. We present a case of EPS involving the neck, axilla, and glans penis in a 42-year-old man who had received long-term α-penicillamine treatment for Wilson disease. Skin biopsy revealed perforating channels containing numerous altered elastic fibers, with a characteristic “bramble brush” or “lumpy-bumpy” appearance as demonstrated by an elastin stain. The latter is thought to be pathognomonic for penicillamine-induced degenerative elastosis. These degenerative changes occurring in glans penis have rarely been described in the literature. Prompt recognition of the rare presentation could lead to early discontinuation of the offending drug, to prevent further sequelae.

Copyright © 2013, Taiwanese Dermatological Association. Published by Elsevier Taiwan LLC. All rights reserved.

Introduction

Elastosis perforans serpiginosa (EPS) is recognized as one of the four classical primary perforating disorders, along with reactive perforating collagenosis, perforating folliculitis, and Kyrie disease. It is known to occur in association with other systemic diseases, particularly inherited connective tissue disorders such as Ehlers-Danlos syndrome, osteogenesis imperfecta, pseudoxanthoma elasticum, or Marfan syndrome.¹ It is also a well-recognized potential complication of long-term α-penicillamine therapy. Here, we present a case illustrating the typical histological findings of α-penicillamine-induced EPS, including characteristic “bramble brush” or “lumpy-bumpy” alterations of elastic fibers, with an extremely rare clinical presentation involving the glans penis. The skin eruptions of our case developed on the glans penis initially without typical annular or serpiginous configuration, which could make it difficult to diagnosis accurately. Our case highlights that EPS should be considered as a differential diagnosis at this site.

Case report

A 42-year-old male patient presented to our dermatology department with a history of progressive, slightly itchy skin eruptions initially on the glans penis, then spreading to neck and axilla during the previous 2 months. He had been diagnosed with Wilson disease when he was 26 years old and had received long-term treatment with α-penicillamine (600 mg, three-times daily) for more than 16 years. Physical examination revealed erythematous to dusky red keratotic papules, that had a tendency to coalesce into annular and serpiginous plaques, with a central clearing on both sides of the neck and axillary areas (Figure 1A and B). There were also several discrete erythematous papules with central keratotic plugs on the glans penis (Figure 1C and D). Skin biopsy from the axilla and glans penis revealed a localized area of irregular acanthosis with broadened rete ridges and epidermal invagination surrounding basophilic inflammatory debris and eosinophilic material that formed configurating perforating channels (Figure 2A and B). At a higher magnification, degenerated cells, mixed inflammatory cells, and inflammatory debris with an accumulation of eosinophilic fragmented fibers at the base of channels, could be seen in the perforating channels (Figure 2C and D). An elastin stain showed numerous irregular, coarse, and fragmented elastic fibers within the channels (Figure 2E). At a higher magnification, multiple
serrations and buds arising perpendicularly from the surface of the irregular elastic fibers, producing a characteristic “bramble brush” or “lumpy-bumpy” appearance, were observed (Figure 2F).

According to the clinical observations and histological findings, a diagnosis of D-penicillamine-induced EPS was made. We initially administered topical tazarotene gel, but the patient could not tolerate the side effects that included peeling and irritation. He was further treated with cryotherapy. Although some of the previous lesions showed partial regression after treatment, some continued to progress. After consulting with the patient’s neurologist, we substituted trientine dihydrochloride for D-penicillamine to control the symptoms of Wilson disease. The skin lesions stopped progressing, leaving central atrophic scars during a 1-year follow-up (Figure 3A and B).

Discussion

EPS is a rare perforating dermatosis characterized by trans-epidermal elimination of altered elastic fibers. These conditions are characterized by the clinical presentation of hyperkeratotic papules that occur in a serpiginous arrangement, with the microscopic characteristic of transepidermal elimination of abnormal elastic fibers. It is a rare disorder that mainly affects adolescents or young adults, with a 4:1 male predominance.2 It has traditionally been classified into the following three subtypes: idiopathic; secondary to treatment with D-penicillamine; or associated with other systemic, inherited, fibrous tissue abnormalities such as Down syndrome, Marfan syndrome, acrogeria, pseudoxanthoma elasticum, osteogenesis imperfecta, Rothmund-Thomson syndrome, Ehlers-Danlos syndrome, or scleroderma. Once the diagnosis of EPS is made, the clinician should investigate the possibility of comorbid states or penicillamine therapy. Some experts recommend ophthalmologic examination and cardiac echocardiography, whereas others defer such investigations beyond a thorough patient history and physical examination.1

The exact cause of EPS is unknown, but it has been suggested that the primary abnormality is possibly in the dermal elastin, which provokes a cellular response leading to the extrusion of abnormal elastic tissue.3 Fujimoto et al demonstrated that elastin could be a potent inducer of migration and terminal differentiation of cultured keratinocytes, mediated by the 67 kDa elastin receptor.4 The receptor is abundantly expressed in the active peripheral keratotic area of EPS and appears to be related to the elastic fiber content in the dermal material.5 It has been postulated that the elastin-keratinocyte interaction, mediated by the elastin receptors, plays an important role in the transepidermal elimination of elastin, inducing EPS.

D-Penicillamine has been used as one of chelating agents and disease modifying antirheumatic drugs in the treatment of Wilson disease, cystinuria, rheumatoid arthritis, and scleroderma.6 The most common adverse effects of D-penicillamine are cutaneous, occurring in approximately 25–50% of patients. These adverse effects can be classified into four groups based on the induction mechanism, including: (1) interference with collagen and elastin such as pseudoxanthoma elasticum, cutis laxa, and mucosal elastosis; (2) acute sensitivity reactions such as urticaria and exanthermatous drug-induced eruption; (3) autoimmune mechanisms such as bullous and lupus-like reactions; and (4) miscellaneous dermatoses that result from undefined mechanisms.7,8 The postulated mechanisms relevant to collagen and elastic fibers include: (1) direct inhibition of collagen synthesis, a well-known effect of D-penicillamine for the treatment of scleroderma that further interferes with elastic fiber cross-linking; and (2) copper deficiency secondary to D-penicillamine treatment at higher doses, that impairs the lysyl oxidase activity on elastic fiber desmosine cross-linking, a crucial process in fiber stabilization.29 Accordingly, the

Figure 1 (A) Erythematous to dusky red keratotic papules coalescing to form annular or serpiginous plaques with a central clearing on both sides of the neck occurred in this 42-year-old man. The patient had been on long-term treatment with D-penicillamine for Wilson disease; (B) serpiginous plaques with a central clearing and atrophy near the axilla were observed in the same patient; and (C, D) several erythematous papules with central keratotic plugs were seen on the glans penis of the same patient (arrow).
accumulation of abnormal elastic fibers could provoke a foreign body reaction, by inducing elastin-keratinocyte interactions, and subsequently transepidermal extrusion of abnormal elastic fibers developed, which caused the hallmark indication of EPS. D-Penicillamine-induced EPS is almost exclusively associated with long-term therapy for Wilson disease and cystinuria, probably because these drug effects require prolonged administration of D-penicillamine at high dose (1 g daily for more than 5 years).10 The cumulative dosage and duration of D-penicillamine in our patient is 1800 mg daily for about 16 years.

Previous reports of D-penicillamine-induced EPS showed that it could coexist with other cutaneous adverse effects related to elastic fiber alteration, such as pseudoxanthoma elasticum,11,12 cutis laxa,13,14 and mucosal elastosis.15,16 Some authors have suggested that dermatoses should be considered as different expressions of the same degenerative process and reclassified as one entity, “penicillamine-induced degenerative dermatosis”.17 Moreover, the D-penicillamine-induced elastic fiber alteration yields a peculiar histopathologic feature — serrated appearance of elastic fibers due to perpendicular budding from their surface, giving a “bramble brush” or “lumpy-bumpy” appearance3,18 as demonstrated in our case. This distinct degenerative elastolytic change could be seen in patients with D-penicillamine-induced degenerative dermatosis. Similar elastic fiber changes have also been reported to occur in nonlesional skin,3,9 artery,19 upper respiratory tract,20 and lung.21 Such widespread changes may suggest ongoing, potentially serious systemic effects caused by elastic fiber damage.

Numerous treatment methods for EPS have been described, although there is no “gold standard” therapy. Anecdotally reported effective therapies include oral isotretinoin,22 topical tazarotene,23 imiquimod,24 narrow-band ultraviolet B, calcipotriene,25 cryotherapy,26 and laser ablation.27 D-Penicillamine therapy to treat Wilson disease can be substituted by the administration of alternative medications such as zinc salts, which block the intestinal absorption of copper, and trientine dihydrochloride, another copper chelator with less toxicity.16,28 In the patient of the present case, discontinuation of penicillamine therapy stopped the progression of EPS. However, multiple case reports have described the abrupt

Figure 2 (A) A skin biopsy from the axilla showed irregular acanthosis with broadened rete ridges, epidermal invagination surrounding basophilic inflammatory debris and eosinophilic fragmented fibers that formed perforating channels [hematoxylin and eosin (H and E, 40×)]; (B) another skin biopsy taken from the glans penis indicated a localized area of acanthosis surrounding the perforating channels, through which inflammatory debris and eosinophilic fragmented fibers were being eliminated [hematoxylin and eosin (H and E, 40×)]; (C) the perforating channels of an axillary skin biopsy containing degenerated cell debris, mixed inflammatory cells, and inflammatory debris, with an accumulation of eosinophilic fragmented fibers at the base of the channels [hematoxylin and eosin (H and E, 40×)]; (D) the perforating channels of a penile biopsy containing a mixed inflammatory infiltrate of predominantly neutrophils, cell debris, and fragmented fibers at the base of the channels [hematoxylin and eosin (H and E, 40×)]; (E) numerous irregular thickened and fragmented elastic fibers within the channels were revealed by an elastic stain (orcein stain, 100×); and (F) perpendicular budding from the surface of the irregular elastic fibers formed a serrated border (arrow) giving a characteristic “bramble brush” or “lumpy-bumpy” appearance at a higher magnification (orcein stain, 400×).
onset or EPS recurrence months to years after terminating penicillamine therapy. These events are probably related to the cumulative dose and slow clearance of the drug, with the remaining effects observed on the elastic tissue.

To the best of our knowledge, glans penis is an extremely rare site that develops EPS. Roest and Ratnavel reported the case of a 44-year-old man with β-penicillamine-induced EPS on the glans penis with cystinuria. It presented as a single, isolated erythematous scarring plaque with a pale depressed center on the glans penis that developed after recurrent episodes of asymptomatic ulceration, without coexistent EPS at other sites. This finding was different from that in our patient. As mentioned above, β-penicillamine-induced degenerative changes of elastic fibers could be found in the skin, mucosa, and other visceral organs; therefore, it is reasonable that similar changes can occur in the glans penis to cause penile EPS.

In conclusion, we present a case of EPS caused by long-term administration of β-penicillamine with the involvement of glans penis. The atypical presentation and rarity of the disease could cause delayed diagnoses or misdiagnoses. This disease is important, as it represents a degenerative process induced by D-penicillamine and probably represents only the tip of the iceberg because of the potential involvement of other nonlesional skin and visceral organs. Prompt recognition of these adverse cutaneous effects and discontinuation of the drug may be necessary to prevent the possible occurrence of systemic sequelae.

References