The role of viral infection in the development of severe drug eruptions

Tetsuo Shiohara

*Department of Dermatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan

**Corresponding author. E-mail addresses: tspshio@ks.kyorin-u.ac.jp, tetsuoshiohara@gmail.com.

Introduction

The list of drugs causing severe drug eruptions in susceptible individuals is constantly growing and includes hundreds of pharmacologic products. It has long been speculated but not clearly shown that viruses are involved in the development of drug allergy, in particular severe drug eruptions in different ways: for example, prior viral infections could predispose genetically susceptible individuals to the subsequent development of drug allergy.1,2 Alternatively, dysregulated immune responses to viruses have also been associated with development and/or pathogenesis of drug eruptions. Thus, circumstantial evidence is accumulating that immune responses to drugs can be profoundly influenced by herpesvirus infection that occurs before, concurrent with, or subsequent to drug administration. The current advances in our understanding of the role of viral infections in drug eruptions have been sparked by recent studies on human herpesvirus 6 (HHV-6) reactivation in severe systemic hypersensitivity reactions to drugs, eventually referred to as drug-induced hypersensitivity syndrome (DiHS)/drug reaction with eosinophilia with systemic symptoms (DRESS). It becomes clear that HHV-6 is not the only herpes virus reactivated during the course of DiHS and other herpes viruses are also reactivated in sequence as shown in graft-versus-host disease (GVHD), which can explain frequent deterioration or several flare-ups of clinical symptoms occurring after withdrawal of the causative drug in DiHS. Here we describe how sequential activations of herpesviruses occur during the course of DiHS and discuss how the reactivation events could influence the initiation and maintenance of drug-specific immune responses, resulting in severe immunopathology.

Involvement of herpesviruses in drug allergy

A relationship between viral infections and the simultaneous or subsequent development of drug eruptions has been observed in a number of clinical situations. One of the well-known examples is ampicillin rash during infectious mononucleosis (IM), an acute illness which is generally the result of delayed primary infection with EBV and is characterized by pharyngitis, cervical lymphadenopathy, fever, and fatigue (Figure 1).4 Although earlier studies reported that most IM patients, once treated with ampicillin, developed extensive maculopapular rashes in the 2nd week after the administration of the drug,5 similar rashes have been reported to occur in IM patients who had received other antibiotics, thus indicating that ampicillin is not the sole factor. Because only 10% of patients recovered from IM showed sensitivity to ampicillin and there is a similar prevalence found in the general population, ampicillin rashes during IM are unlikely to be due to a de novo induction of drug antigen-specific T cells uniquely generated by...
ampicillin alone in the setting of delayed primary infection with EBV. In view of the observation that large expansions of activated EBV-specific CD8\(^+\) T cells and increased natural killer (NK) cell numbers are observed during the disease\(^4\) and that EBV-specific T cells have been shown to cross-react with self-human leukocyte antigen (HLA) alleles of several common HLA-B alleles\(^6,7\), preferential development of drug rashes during the disease may be due to a selective expansion of CD8\(^+\) T cells, which are cross-reactive to the drug, from EBV-specific CD8\(^+\) T cells already present in large amounts before administration of the drug. Thus, it remains unclear why only a proportion of IM patients develop drug rashes, but it may be related to the attendant release of interleukin (IL) 6, whose level showed correlation with the symptom severity of IM\(^8\).

Interestingly, the acute symptoms of IM resolve in 2–6 weeks, but relapse can occur in the first 6–12 months following infection\(^8\), a finding that can be also observed in a severe systemic hypersensitivity reaction to drug as described later. Given the similarity in sequences of clinical symptoms and clinical manifestations between IM and such a severe systemic hypersensitivity reaction (Figure 1), knowledge on the immune control of primary and persistent herpesvirus infection could be translated into clinical practice contributing to improved patient care in severe drug eruptions.

Severe systemic hypersensitivity reaction associated with herpesvirus reactivation

Fifteen years ago, we\(^9\) and Dr. Hashimoto’s group\(^10\) independently published landmark studies that sparked the current advances in our understanding of the role of viral infections in drug allergy. These initial studies detected HHV-6 DNA by polymerase chain reaction (PCR) in blood and skin specimens from patients with the severe systemic hypersensitivity reaction to drug, eventually referred to as drug-induced hypersensitivity syndrome (DiHS). DiHS, also referred to as drug reaction with eosinophilia with systemic symptoms (DRESS), represents the opposite end of a spectrum of severe drug eruptions. The first description of DiHS is credited to Merritt and Putnam, who in 1938 reviewed the toxic symptoms caused by phenytoin and noted that the symptoms could be divided into two cutaneous reactions, a mild, mobilliform eruption and a severe, exfoliative dermatitis with fever and eosinophilia\(^11\). Since then, it has become clear that the latter reaction is also associated with lymphadenopathy and multisystemic involvement. Although the latter reaction was recognized as a distinct syndrome in the early 1960s, there has been much debate about the diagnosis and considerable confusion about the name of this syndrome. Although the term DRESS is still widely used to describe the clinical symptoms, we proposed the alternative term ‘DiHS’ based on a retrospective nationwide survey of patients in Japan\(^12,13\) in the survey, HHV-6 reactivations as evidenced by the significant rise in serologic immunoglobulin G (IgG) titers to HHV-6 or the detection of HHV-6 DNA in the blood were detected at a particular time point, 2–3 weeks after the onset of rash in the vast majority of patients regardless of treatment (Figure 2)\(^14,15\). Based on the survey, a Japanese consensus group named Japanese Research Committee on Severe Cutaneous Adverse Reaction (J-SCAR), established a set of criteria for the diagnosis of DiHS in 2006 (Table 1)\(^16\). The clinical and laboratory features of this syndrome in its florid form are currently well recognized in Japan but there has been debate about the inconsistent and variable terminology in other parts of the world. HHV-6 reactivations can be widely used as a specific and sensitive diagnostic clue in Japan, because they are
Typical DiHS: the diagnosis is confirmed by the presence of the seven criteria above; atypical DiHS: five of the seven.

ALT = alanine aminotransferase; DiHS = drug-induced hypersensitivity syndrome; HHV-6 = human herpesvirus 6.

This can be replaced by other organ involvement, such as renal involvement.

DiHS typically occurs with fever and rashes 3 weeks to 3 months after starting therapy with a limited number of drugs, mainly anticonvulsants (Table 2). This delayed onset in relation to the introduction of the causative drug is one of the most important features of this syndrome that can be distinguished from other types of drug eruptions, which usually start 1–2 weeks after starting therapy. Importantly, more severe reactions often occur 3–4 days after withdrawal of the causative drug, while most other milder forms of drug eruptions spontaneously resolve: this paradoxical worsening may be mistaken for severe infectious disease. DiHS has also been reported to occur in patients receiving anticonvulsants for up to 40 years. The maculopapular or erythematous eruptions are initially observed on the face, upper trunk, and upper extremities. The cutaneous eruption usually begins as patchy erythematous macules, which may be slightly pruritic and can become confluent (Figure 1). Most erythematous eruptions do not evolve into blisters and no mucous membrane involvement is usually seen, although fever usually precedes the rash by some or several days and temperature ranges from 38 to 40 °C with spikes that usually generate concern regarding an underlying infection. Periorbital and facial edema with pinhead-sized pustules, reminiscent of acute generalized exanthematous pustulosis, is also one of the characteristic features of early cutaneous lesions in DiHS. Follicular accentuation of the erythematous papules is often observed in the early stage of the rash. The eruption often generalizes into severe exfoliative dermatitis or erythroderma, which usually occurs with continued treatment with the causative drug after this syndrome has developed. Lymphadenopathy can be seen in most patients (>70%), particularly early in the illness, predominantly affecting cervical nodes. Bilateral swelling of the salivary glands with xerostomia has frequently been seen, suggesting reactivation of the mumps virus. These clinical features can often be misdiagnosed as bacterial infection, which may place a substantial burden on physicians to consider unnecessary empirical antibiotic therapy, which may result in the development of additional drug hypersensitivity. This is because patients with DiHS often show unexplained cross-reactivity to multiple drugs with different structures. Other inflammatory conditions that are in the clinical differential diagnoses include measles, IM, Kawasaki syndrome, drug-induced pseudolymphoma, and staphylococcal toxic shock syndrome. Variable clinical symptoms, such as liver and renal symptoms, continue to deteriorate one after another, even for weeks after withdrawal of the causative drug.

In most cases, marked leukocytosis with atypical lymphocytosis or eosinophilia of various degrees can often be seen early in the course, although leukopenia or lymphopenia may precede the leukocytosis in some cases. Depending on the drug, involvement of other organs varies: renal involvement is particularly evident in allopurinol-induced DiHS. Interstitial pneumonia with eosinophilia is often observed in patients receiving minocycline. Myocarditis may also develop at onset or 40 days after onset: clinical symptoms suggestive of myocarditis include heart failure symptoms such as chest pain, unexplained tachycardia, breathlessness, and low blood pressure early in the course. We also reported a patient with DiHS who developed limbic encephalitis and the syndrome of inappropriate secretion of antidiuretic hormone long after resolution of rashes. A decrease in serum IgG, IgA, and IgM levels is typically observed at onset and the lowest levels are usually detected a week after withdrawal of the causative drug. Despite such variable clinical presentations, HHV-6 reactivations can be detected at a particular time point, 2–3 weeks after onset of rash in the vast majority of patients regardless of treatment, but not in those with other drug eruptions. Thus, this becomes a gold standard test for identifying patients with DiHS. Nevertheless, it has become clear that HHV-6 was not the only virus reactivated during the course of DiHS. Recently, our studies of real-time measurements for viral loads have demonstrated that other herpesviruses are also reactivated in sequence during the course of DiHS as demonstrated in graft-versus-host diseases (GVHD). According to our sequential analysis of viral loads, the cascade of reactivation events initiated by HHV-6 or EBV would extend, with some delay, to HHV-7 as well, and eventually to CMV (Figure 3). The magnitude of HHV-6 reactivations as evidenced by the increase in HHV-6 DNA levels was correlated well with the severity of inflammatory responses, consistent with the previous observations in GVHD. Thus, frequent deterioration or several flare-ups of clinical symptoms occurring after withdrawal of the causative drug in DiHS patients can be explained by sequential reactivations of various herpesviruses in different organs, which may occur totally independently of that detected in the blood.

Table 1 Diagnostic criteria for DiHS established by a Japanese consensus group.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Maculopapular rash developing >3 weeks after starting with a limited number of drugs</td>
<td></td>
</tr>
<tr>
<td>2. Prolonged clinical symptoms after discontinuation of the causative drug</td>
<td></td>
</tr>
<tr>
<td>3. Fever (<38°C)</td>
<td></td>
</tr>
<tr>
<td>4. Liver abnormalities (ALT > 100 IU/L)</td>
<td></td>
</tr>
<tr>
<td>5. Leukocyte abnormalities (at least one present)</td>
<td></td>
</tr>
<tr>
<td>a. Leukocytosis (~11 × 10^9/L)</td>
<td></td>
</tr>
<tr>
<td>b. Atypical lymphocytosis (~5%)</td>
<td></td>
</tr>
<tr>
<td>c. Eosinophilia (~1.5 × 10^9/L)</td>
<td></td>
</tr>
<tr>
<td>6. Lymphadenopathy</td>
<td></td>
</tr>
<tr>
<td>7. HHV-6 reactivation</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 The causative drugs of drug-induced hypersensitivity syndrome.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Allopurinol</th>
<th>Dapsone</th>
<th>Salazosulfapyridine</th>
<th>Mexiteline</th>
<th>Minocycline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenytion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenoobarital</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonisamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomotrigine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
an exaggerated, hyperinflammatory response associated with inflammation-induced viral reactivations and subsequent organ injury. According to this hypothesis, sequential reactivations of herpesviruses could simply be the consequence of drug-induced severe immunopathology and thus not represent a causal factor. Consistent with this view, viral DNA was undetectable at the early phase of DiHS in the blood; indeed, viral DNA levels such as HHV-6 and EBV were undetectable in the vast majority of DiHS patients or low in those few individuals sampled within 7 days after onset. This argues against the idea that viruses and virus-specific CD8
\(^+\) T cells are responsible for drug-induced immunopathology observed in the early phase of DiHS. Given the extraordinarily precursor frequency of drug-reactive T cells at the early phase and the degeneracy of T cell recognition, it is perhaps not surprising that virus-specific T cells become activated following administration of certain drugs, as observed in alloreactive T cells stimulated with virus infections in GVHD. In this regard, Picard et al have recently demonstrated that cutaneous and visceral symptoms of DiHS/DRESS are mediated by activated CD8
\(^+\) effector T (Teff) cells, which are largely directed against herpesviruses such as EBV. Their observations suggest the possibility that herpesvirus reactivations triggered by the causative drug is an initiating event that presumably occurs well before patients become symptomatic and thus activation of CD4
\(^+\) and CD8
\(^+\) Teff cells, despite its early appearance after onset, appears to be a secondary event that requires and follows the prior reactivation of herpesviruses. This suggestion would be the opposite of that indicated by earlier studies. If, as suggested here, herpesvirus reactivations represent the actual initiating event in the disease process, it is logical to ask what causes the reactivation events only in susceptible patients receiving the causative drug.

Expansions of regulatory T cells in DiHS

We have recently demonstrated that the clinical phenotype of the severe drug eruptions can be determined when and how regulatory T (Treg) cell function could be impaired: in SJS/TEN, Treg function is profoundly impaired during the acute stage while expansions of functional Treg cells occur in the acute stage of DiHS and the expanded Treg cells are contracted upon clinical resolution and eventually become functionally defective. Various clinical features uniquely observed in DiHS could be explained by the expansions of Treg cells. The frequencies of CD4
\(^+\)FoxP3
\(^+\) Treg cells were preferentially increased in the blood of all patients with DiHS at the acute stage before treatment, with a peak median value that was more than three times the baseline value, without affecting their suppressive function. Because the frequencies of Treg cells remained significantly elevated even at 1 week after initial treatment with systemic corticosteroids, expansions of Treg cells are not a universal feature of systemic corticosteroid therapy that improves DiHS. Treg cells were also abundantly detected in skin lesions of DiHS, thereby limiting severe epidermal damage. By contrast, high levels of Treg cells prevent efficient clearance of viral infections by suppressing antiviral immune responses and may allow latent herpesviruses to be reactivated. In view of our preliminary observation that the causative drug has the capacity to expand not only Treg cells, but also Teff cells from DiHS patients after resolution when stimulated the peripheral blood lymphocytes (PBL), Treg cells in DiHS patients would be unique in that they can proliferate in response to relevant drug antigen. Alternatively, other immune cells such as CD16
\(^+\) monocytes, which may inhibit the induction and proliferation of Treg cells, may be defective in function in patients with DiHS. Thus, herpesvirus reactivations probably triggered by expansions of Treg cells are likely to activate polyclonal population of herpesvirus-specific T cells that include those that are both cross-reactive with the causative drug and noncross-reactive.

Long-term outcomes of viral reactivations

It remains unknown whether sequential reactivations of several herpesviruses could be also observed in other severe drug eruptions, and beyond the acute stage of DiHS. Our quantitative analysis of viral loads during a 2-year period after onset revealed persistently elevated EBV loads in patients with SJS during either the acute stage or long after clinical resolution: in many if not all patients with SJS, increased EBV DNA persisted for up to 2 years after onset, regardless of the clinical course and treatment. By contrast, only a fraction of patients with DiHS had increased levels of EBV.

<table>
<thead>
<tr>
<th>EBV VCA IgG (FA)</th>
<th>80</th>
<th>160</th>
<th>ND</th>
<th>ND</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV IgG (ELA)</td>
<td>58</td>
<td>165</td>
<td>ND</td>
<td>380</td>
<td>333</td>
</tr>
<tr>
<td>HHV-6 IgG (FA)</td>
<td>40</td>
<td>5120</td>
<td>1280</td>
<td>1280</td>
<td>640</td>
</tr>
</tbody>
</table>

Figure 3 Sequential reactivations of various herpesviruses during the course of drug-induced hypersensitivity syndrome in a representative case. Occurrence of various clinical symptoms coincident with the reactivation of herpesviruses.
DNA in the blood at onset. These results indicate that patients with high EBV DNA loads may be at risk of subsequently developing SJS. However, contrary to our initial expectation, no patients with TEN demonstrated elevated EBV loads during either the acute stage or long after clinical resolution. High HHV-6 loads were exclusively detected in patients with DiHS during the acute stage. CMV reactivations occurred in ~20% of patients with DiHS as well as those with SJS during the acute stage. Nevertheless, the dynamics of EBV, CMV, and HHV-6 reactivation varied considerably in these patients according to the use of systemic corticosteroids. EBV DNA loads were significantly lower in patients with DiHS treated with systemic corticosteroids than those without them, although CMV and HHV-6 DNA loads were the opposite.

Our series of patients and a review of the English literature demonstrated that less than 10% of patients with DiHS die within 1 year after onset and autoimmune diseases or production of autoantibodies occur as a sequela of DiHS after a disease-free interval of several months to years. In some patients with DiHS surviving the acute stage: they include type 1 diabetes mellitus, autoimmune thyroid disease, sclerodermoid GVHD-like lesions, and lupus erythematosus. Because EBV reactivations were preferentially observed during the acute stage of DiHS in some patients who subsequently developed these autoimmune diseases, EBV reactivations may act as a trigger for the subsequent development of autoimmune diseases. Interestingly, the increase in various autoantibody titers such as antinuclear antibodies (ANA) and the development of autoimmune diseases during the resolution stage were preferentially observed in DiHS patients who had not received systemic corticosteroids during the acute stage (Figure 4). Consistent with the results of these studies, the generation of autoantibodies to periplakin was also observed in DiHS patients who had not received systemic corticosteroids during the acute stage. These results suggest that immune responses preventable with systemic corticosteroids and/or increased EBV DNA loads during the acute stage could trigger the subsequent generation of autoantibodies and that early intervention by systemic corticosteroids may lead to better long-term outcomes for DiHS patients at risk of subsequently developing autoimmune disease. In addition to the role of EBV reactivations, a gradual loss of Treg function after resolution of DiHS could also increase the risk.

Conclusion

The role of viral infections in the onset, progression, and modulation of a multifactorial disease process in drug eruptions is now well established from a variety of epidemiological, clinical, and experimental studies. Despite the tremendous advances in our understanding of viral pathogenesis, we have to emphasize how much there is still to learn about the ways that link viral infections to drug eruptions. Developing animal models that reliably mimic features of DiHS would represent a useful tool in helping us understand the mechanisms and develop new therapies.

Acknowledgments

This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology (to T.S.) and the Health and Labour Sciences Research Grants (Research on Intractable Diseases) from the Ministry of Health, Labour, and Welfare of Japan (to T.S.).

References

