CASE REPORT

Anti-p200 pemphigoid responding to dapsone

Laura Van Lerberghe1,*, Audrey Lasek1, Pierre Gosset2, Fabienne Jouen3, Philippe Modiano1

1 Department of Dermatology, University of Lille, France
2 Department of Anatomopathology, University of Lille, France
3 Rouen University Hospital, Department of Immunopathology, Rouen F-76031, France

ARTICLE INFO

Article history:
Received: Dec 10, 2012
Revised: Mar 6, 2013
Accepted: Mar 10, 2013

Keywords:
autoimmune bullous disease
bullous pemphigoid
dapsone
immunoblotting
laminin γ1

ABSTRACT

Anti-p200 pemphigoid is a rare autoimmune subepidermal blistering disease. Clinical presentation is similar to standard bullous pemphigoid (BP) but mucous membranes and cephalic lesions are more frequent. Histology and direct immunofluorescence (IF) are identical to BP but indirect IF discloses linear deposits of immunoglobulin G (IgG) on the dermal side of artificial salt-split skin. Specific diagnosis is based on western immunoblotting that shows circulating IgG recognizing a 200-kDa protein localized on the dermal extract. The 200-kDa antigen was recently identified as laminin γ1. Anti-p200 pemphigoid should be considered before all atypical or topical steroid-resistant bullous disease, as well as mucous membranes pemphigoid or epidermolysis bullosa acquisita. Dapsone appears to be the most effective treatment and should be used as the first option in combination with topical steroids. In this report, we describe the case of a patient with a typical clinical and immunopathological anti-p200 pemphigoid, responding to a combination of topical steroids and dapsone.

Copyright © 2013, Taiwanese Dermatological Association. Published by Elsevier Taiwan LLC. All rights reserved.

Introduction

Anti-laminin γ1 pemphigoid is a recently-described autoimmune subepidermal bullous disease that has been characterized by autoantibodies against a 200-kDa protein (p200) of the dermal–epidermal junction (DEJ).

Here, we describe the typical clinical, histopathological, and immunopathological features in a patient with anti-p200 pemphigoid and his favorable response to treatment with dapsone.

Case report

A 74-year-old man presented with a blistering pruriginous eruption evolving for 3 months. Skin lesions were mainly localized on palms and soles with erythematous plaques and vesicles or tense blisters (Figure 1A). Oral and genital mucosae were involved with large painful erosions (Figure 1B). The trunk and limbs showed polymorphic erythematous plaques (Figure 1C). The patient was treated for several years with nebivolol and amlodipine for hypertension. There was no new medication introduced. A personal history for cutaneous disease was negative. Standard blood analysis showed no specificity and particularly no hypereosinophilia.

Histopathological analysis of the lesional skin revealed a slight dermal–epidermal separation and a neutrophilic and eosinophilic infiltrate in the dermal papillae (Figure 2A). Direct immunofluorescence (IF) showed the presence of linear immunoglobulin G (IgG) and complement 3 (C3) at the DEJ (Figure 2B). Diagnosis of bullous pemphigoid (BP) was established and the patient was successfully treated by clobetasol propionate 0.05% cream 40 g daily. However, skin lesions reappeared when the treatment was tapered. Because of this steroid resistance, new analyses were realized. Secondary histopathological analysis and direct IF confirmed the diagnosis of BP. Indirect IF disclosed circulating antibodies at a titer of 1:10, which is not significant. Those antibodies reacted with the floor of an artificial blister created by the salt-split skin technique (Figure 3). Enzyme-linked immunosorbent assay (ELISA) with basal membrane zone proteins of 230 kDa (BP230) and 180 kDa (BP180) were negative. Western immunoblot analysis using a dermal extract showed the reactivity of circulating IgC4 antibodies with the 200-kDa antigen, suggesting the diagnosis of anti-p200 pemphigoid (Figure 4). The patient was successfully treated by combining clobetasol propionate 0.05% cream 30 g daily and dapsone 100 mg daily, with a progressive healing of erosions without scarring and milia.
formation (Figure 1D). His disease is currently controlled with dapsone 100 mg daily and without the use of corticosteroids.

Discussion

In 1996, Zillikens et al1 described the first case of a new subepidermal immunobullous disease called anti-p200 pemphigoid. Approximately 70 cases of anti-p200 pemphigoid mediated by IgG antibodies have been reported in the literature to date,2 and only one was associated exclusively with immunoglobulin A (IgA) antibodies.3 In 2009, Dainichi et al4 identified the 200-kDa protein as laminin γ_1 and renamed the disease anti-laminin γ_1 pemphigoid.

Anti-p200 pemphigoid usually occurs at a younger age than that observed in patients with BP and appears to be more frequent in male patients.5 The presentation is rather heterogeneous and may mimic BP, linear IgA dermatosis, dermatitis herpetiformis,6 or epidermolysis bullosa acquisita (EBA).5 The BP-like type is the most common and is characterized by itchy urticarial papules and plaques and tense blisters on the trunk and extremities.5 Oral and genital mucous membranes are affected in approximately 20% of patients with anti-p200 pemphigoid and cephalic involvement is common.5 Blood analysis does not disclose the hypereosinophilia found in classic BP.

In our patient, we found acral predominance of the lesions and considerable mucous membrane involvement. Lesions usually heal without scarring; milia formation has been observed in three previously reported cases.7--9

Except for psoriasis in one-third of cases, no other cutaneous disease or tumor seems to be associated with anti-laminin γ_1 pemphigoid. There is only one case report about penicillin-induced anti-p200 pemphigoid.10

Figure 2 (A) Histological analysis: hematoxylin–eosin staining of the lesional skin (x20) showing slight dermal–epidermal separation and a neutrophilic and eosinophilic infiltrate in the dermal papillae. (B) Direct immunofluorescence shows immunoglobulin G and complement 3 deposits along the basement membrane zone.
Histopathological analysis of lesional skin shows a slight dermal–epidermal separation with neutrophilic and/or eosinophilic infiltration in the superficial dermis. Direct IF examination of a perilesional skin biopsy revealed linear deposits of IgG and C3 along the DEJ. In two cases, an additional staining for IgA was described, and one case even revealed exclusively IgA deposits. ELISA test with the recombinant monomeric C-terminal fragment of human laminin γ1. This test has a high specificity of 98.7% but an insufficient sensitivity of 69%. Further studies are required to improve detection of autoantibodies to laminin γ1 for routine diagnosis of blisters.

Clinically, the first diagnoses mentioned are BP, mucous membranes pemphigoid, and inflammatory EBA. For now, anti-p200 pemphigoid cannot be distinguished from other subepidermal blistering disorders on the basis of histological and immunopathological features alone. Diagnosis is made by western blotting and depends entirely on the quality of the dermal extract. For this reason, anti-p200 pemphigoid may have been underdiagnosed in the past.

Differentiation of this disease from EBA is relevant as anti-p200 pemphigoid commonly shows a relatively benign course and can be treated with topical clobetasol propionate alone or in association with oral dapsone.

In 2003, Shimanovich et al showed that p200 is an acidic noncollagenous N-linked glycoprotein of the lower lamina lucida. The laminin γ1 chain has recently been identified as the target antigen in anti-p200 pemphigoid and the C-terminus was described as an immunodominant region of laminin γ1. Laminin γ1 is a component of different forms of laminin heterotrimers, which contributes to dermal–epidermal adhesion outside hemidesmosomes. Laminin γ1 is a ubiquitous protein found in the DEJ, blood vessels, and in the extracellular matrix of several organs including the central nervous system. It has been suggested that laminin γ1 in the DEJ may have different post-translational modifications explaining the cutaneous specificity of the disease: the antibody anti-laminin γ1 should recognize a specific form present only in the skin.

Based on the literature, anti-p200 pemphigoid is treated with various immunosuppressive therapies. Most of the cases required systemic corticosteroid therapy (up to 1 mg/kg/day), alone or in association with other immunosuppressive drugs (azathioprine, ciclosporin, mycophenolate mofetil, methotrexate, intravenous immunoglobulins). One patient was completely healed with topical steroids only. Most of the time, lesions reappeared when treatment was tapered. In several cases, adjunction of dapsone permitted remission and withdrawal of corticosteroids. The present case was treated with a combination of topical corticosteroids and dapsone 100 mg/day, which allowed a completed remission after 1 year.

In conclusion, anti-p200 pemphigoid is probably underdiagnosed and should be considered before every subepidermal bullous disease that does not fulfill the criteria of well-known blistering diseases, because of atypical symptoms or therapeutic resistance. Diagnosis is confirmed by immunoblotting. Dapsone should be considered as the first treatment choice in combination with topical steroids.

References

Figure 3 Indirect immunofluorescence using salted-split skin shows the presence of circulating immunoglobulin G4 antibodies bound to the floor of an artificial blister.

Figure 4 Immunoblot analysis using the dermal extract. Lane 1: serum containing anticollegen VII antibodies (290 kDa). Lanes 2 and 4: normal human serum showing no reactivity. Lane 3: control serum containing anti-p200 antibodies. Lane 5: patient’s serum showing immunoglobulin G4 (IgG4) antibodies reacting with the 200-kDa protein.