CASE REPORT

A Taiwanese woman with Dowling-Degos disease: An electron microscopic study with pathophysiologlcal significance

Wei-Tai Yu, Yung-Shun Su, Chih-Hung Lee*

Department of Dermatology, Kaohsiung Municipal Hsiao-Kang Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan

ARTICLE INFO

Article history:
Received: Aug 24, 2012
Revised: Jan 16, 2013
Accepted: Jan 24, 2013

Keywords:
Dowling-Degos disease
electron microscope
reticulated pigmentation
Taiwan

ABSTRACT

Herein we report a rare case of classical Dowling-Degos disease (DDD) in a Taiwanese woman. A 23-year-old Taiwanese woman presented with generalized hyperpigmentation in irregular and reticulated shapes that she had had since junior high school. Her mother and two sisters had also developed similar pigmentation, starting during their teenage years. The patient did not have previous skin lesions or a history of trauma. She did not have any nail or hair abnormalities. Viewed through a microscope, the hyperpigmented area was found to have elongated rete ridges, the tips of which were found to have a concentration of melanin. Based on the disease onset, family history, clinical and histopathological manifestations, the patient was diagnosed as having DDD. We performed an electron microscopic study revealing a greater number of mature melanosomes in the keratinocytes in the pigmented skin than in those in the nonpigmented skin. The numbers of melanosomes in the melanocytes were similar in both types of skin. This is the first direct comparison of ultrastructural features in pigmented and uninvolved skin in Taiwanese with DDD. We follow the discussion of the case with the differential diagnosis and genetic abnormalities of diseases with reticulate pigmentation. This case report reminds us that keratin 5/14 plays a role in both keratinocyte integrity and melanin transfer.

Copyright © 2013, Taiwanese Dermatological Association. Published by Elsevier Taiwan LLC. All rights reserved.

Introduction

Dowling-Degos disease (DDD) is an autosomal dominant disease that usually presents with reticulated pigmentation predominantly located in major flexural skin beginning in the teenage years. It is also known as reticular pigmented anomaly of the flexures or postpubertal reticulate hyperpigmentation. These lesions are reticular and dark brown. Microscopically, there is a filiform epidermal down growth of epidermal rete ridges, with a concentration of melanin at the tips, without an increase in numbers of melanocytes. The genetic abnormalities of DDD are not unique to one gene. For example, genetic studies from affected families have identified mutations and deletions in the keratin 5 locus in DDD. However, Li et al found a gene locus responsible for DDD that maps to chromosome 17p13.3 in a Chinese family with DDD. Thus, there appears to be phenotypic and genotypic heterogeneity in the pathogenesis of DDD.

Case report

A 23-year-old female presented to our dermatology outpatient clinic with the chief complaint of reticulated hyperpigmentation with irregular shapes, which she had had since junior high school (Figure 1A). According to the patient, her mother and sisters had also developed similar hyperpigmentation starting in their teenage years. She had neither previous skin lesions nor trauma history. The pigmented lesions were neither pruritic nor painful. There were no nail or hair abnormalities. Her mother, and her older and younger sisters had similar skin manifestations; however, her father and her brother did not have any abnormal hyperpigmentations (Figure 2).

Skin biopsy over her hyperpigmented area revealed typical features of DDD, including filiform down growth of rete ridges and a concentration of melanin at the tips of the rete ridges (Figure 1B). Further microscopic examination showed no significant changes in DOPA-reactive melanocytes (data not shown). Fontana-Masson stain showed that melanin expression was increased in the lesional skin (upper left, Figure 3). The patient was diagnosed with...
Ultrastructurally, keratinocytes are readily recognized by the presence of keratin tonofilaments. Melanocytes are recognized by the presence of melanosomes in different stages without tonofilaments and desmosomes. Melanosomes in different stages are distinguished by the presence of pigments, the structure and arrangements of internal membranes. We counted and compared the numbers of mature melanosomes in melanocytes and the numbers of stage IV melanosomes among the mature melanosomes in basal and suprabasal keratinocytes.

Lesional skin and normal skin melanocytes had a similar number and proportion of mature melanosomes and had similar distributions and shapes. The percentage of mature melanosome among the total melanosomes was similar in melanocytes. In lesional skin, particularly in the portion of epidermal projection, the basal keratinocytes contained a significant percentage of Stage IV melanosomes among the mature melanosomes (Stage III and Stage IV). The relative percentage of Stage IV melanosomes among the mature melanosomes was significantly higher in the suprabasal keratinocytes in lesional skin than in the keratinocytes in normal skin. The similar numbers of melanosomes in melanocytes and the increased percentages of Stage IV melanosomes among mature melanosomes in suprabasal and basal keratinocytes suggest that the hyperpigmentations in the lesional skin of DDD might result from abnormalities in melanosome transfer and/or melanosome

Figure 1 Family pedigree of the patient with Dowling-Degos disease.

Figure 2 (A) Clinical features of a Taiwanese woman with Dowling-Degos disease. There was increased reticulate pigmentation in the flexural skin. * Indicates biopsy areas. (B) Histological and electron microscopic features of the lesional vs. nonlesional skin of the patient with Dowling-Degos disease. There was a filiform down growth of rete ridges and concentration of melanin at the tips of the rete ridges.
maturation. After the patient was diagnosed as having DDD, we prescribed a topical retinoid acid, which produced only fair results after 6 months.

Discussion

Dowling et al first described DDD as a benign form of acanthosis nigricans.7 Degos et al later helped delineate DDD from classical acanthosis nigricans.8 The differential diagnosis of DDD from acanthosis nigricans is important because the latter might be associated with internal malignancies or insulin resistance.9 Microscopically, the lesions from the pigmented skin of patients with DDD show elongated epidermal rete ridges with basal filiform hyperpigmentations.10 Classical DDD is distinct from generalized DDD by the reticulate pigmentations without concomitant hypopigmentations.1

This report is the first to compare the lesional skin and nonlesional skin in DDD in Taiwanese of Han Chinese origin. The first ultrastructural study of DDD, which was reported in France, showed strong melanocytic activity with a substantial increase of the melanosomes in the pigmented skin but not in uninvolved axillary skin; however, in the keratinocytes the melanosomes were distributed in a dispersed pattern as in black skin.11 Twenty-five years later, Zhang et al described the second electron microscopic investigation studying the affected skin of a Chinese woman with DDD.12 They found regular melanosomes in all stages of maturation in melanocytes and increased mature melanosomes in scattering or capping patterns in the keratinocytes.12

Until the current study, there has been no direct comparison of the lesional skin and nonlesional skin in the Chinese population. We first compared the lesional skin and nonlesional skin of a Taiwanese woman with DDD clinically, histopathologically, and ultrastructurally. The number, shape, proportion, and distribution of melanosomes in melanocytes were similar in both lesional skin and normal skin. However, the percentage of stage IV melanosomes among the mature melanosomes was found to be increased in basal and suprabasal keratinocytes in lesional skin compared to uninvolved skin. These ultrastructural findings suggest that defective melanosome transfer and/or maturation of melanosomes might be involved in the pathogenesis of DDD.

There are a large number of reticulated pigmentations that need to be distinguished, including dyskeratosis congenita (DKC), X-linked reticulate pigmentary disorder (XLRPD), Naegeli-Franceschetti-Jadassohn syndrome (NFJS), dermatopathia pigmentosa reticularis (DPR), DDD, reticulate acropigmentation of Kitamura (RAPK), and dyschromatosis hereditaria universalis (DHU).13 DKC is characterized by nail atrophy, leukoplakia, and bone marrow failure.14 NFJS is
featured as diffuse palmoplantar keratoderma with nail and teeth changes. DPR can be distinguished by the presence of palmoplantar keratoderma with punctiform accentuation, nail and eye changes. RAPK presents clinically with reticulate and freckle-like hyperpigmentation beginning on the dorsal hands in childhood, and microscopically shows increasing numbers of melanocytes. DHU is characterized by variegated hyper–hypo pigmentation starting at a very young age, while XLRPD shows amyloid deposits in the dermis of lesional skin. The case of DDD in this study had no nail abnormalities and no deposits of amyloid, which excluded the diagnosis of DKC, NFJS and DPR, and the diagnosis of XLRPD, respectively. Disease onset helped exclude DHU. Disease onset and the fact there was no increase in DOPA-reactive melanocytes excluded RAPK, although several reports showed that the features of RAPK and DDD overlap.

DKC is caused by a number of genes, all of which encode products involved in telomere maintenance. NFJS and DPR may share similar haploinsufficiency of keratin 14. RAPK is usually sporadic. While no genetic studies have been performed yet, there appear to be some phenotypic similarities between DDD and RAPK. DHU may be caused by mutations of double-stranded RNA-specific adenosine deaminase gene. DDD, as mentioned earlier, might result from mutations in keratin 5/14 or in chromosome 17. Thus, NFJS, DPR, and DDD might share some mutational loci. The common features of pigmentary abnormalities and the shared genetic abnormalities of keratin 5/14 in NFJS, DPR, and DDD suggest that keratin 5/14 in basal keratinocytes plays an important role in melanosome transfer. Planko et al found an association between keratin 14 with abnormal epidermal growth and impaired melanin transfer. Certain K5/14 mutations also are known to result in the development of epidermolysis bullosa simplex (EBS), a mecanobullous disorder without pigmentary abnormalities. However, DDD usually occurs without blisters, suggesting a site-specific mutation genetic profile in keratin 5/14 might result in either cytoskeletal changes or melanin transfers. Studying 53 patients with EBS, Arin et al identified one patient that had compound heterozygosity for KRT5 mutations causing both DDD and EBS. One question that needs resolution is why reticulate pigmentation, but not general hyperpigmentations, appear in the context of similar gene defects. The possible explanations may include genetic mosaicism and special distribution of melanin transfer.

In conclusion, we present the case of a Taiwanese woman with a family history of classical DDD. We directly compared the clinical, histopathological, and ultrastructural features between the pigmented skin and the uninvolved skin in samples taken from this patient. This case report suggests that the pigmentary abnormalities of DDD might result from abnormal melanosome transfer or maturatation.

References

13. Sirinavin C, Trowbridge AA. Keratin 14 functional deficiency of keratin 14.20,21 RAPK is usually sporadic. While genetic studies have been performed yet, there appear to be some phenotypic similarities between DDD and RAPK. DHU may be caused by mutations of double-stranded RNA-specific adenosine deaminase gene. DDD, as mentioned earlier, might result from mutations in keratin 5/14 or in chromosome 17. Thus, NFJS, DPR, and DDD might share some mutational loci. The common features of pigmentary abnormalities and the shared genetic abnormalities of keratin 5/14 in NFJS, DPR, and DDD suggest that keratin 5/14 in basal keratinocytes plays an important role in melanosome transfer. Planko et al found an association between keratin 14 with abnormal epidermal growth and impaired melanin transfer. Certain K5/14 mutations also are known to result in the development of epidermolysis bullosa simplex (EBS), a mecanobullous disorder without pigmentary abnormalities. However, DDD usually occurs without blisters, suggesting a site-specific mutation genetic profile in keratin 5/14 might result in either cytoskeletal changes or melanin transfers. Studying 53 patients with EBS, Arin et al identified one patient that had compound heterozygosity for KRT5 mutations causing both DDD and EBS. One question that needs resolution is why reticulate pigmentation, but not general hyperpigmentations, appear in the context of similar gene defects. The possible explanations may include genetic mosaicism and special distribution of melanin transfer.

In conclusion, we present the case of a Taiwanese woman with a family history of classical DDD. We directly compared the clinical, histopathological, and ultrastructural features between the pigmented skin and the uninvolved skin in samples taken from this patient. This case report suggests that the pigmentary abnormalities of DDD might result from abnormal melanosome transfer or maturatation.

References